

Seat No.

HP-003-1162003

M. Sc. (Sem. II) Examination April - 2023 Mathematics : CMT - 2003 (Topology - II)

Faculty Code : 003 Subject Code : 1162003

Time : $2\frac{1}{2}$ Hours / Total Marks : 70

Instructions : (1) All questions are compulsory.

- (2) Each question carries equal marks.
- (3) Figure on the right indicate alloted marks.

1 Answer any seven short questions :

7×2=14

- (1) Define term : T_2 Space and give an example of T_2 -Space.
- (2) Let $f: X \to Y$ is onto, continuous, closed and X is a T_1 -Space. Prove that, Y is a T_1 -Space.
- (3) Give an example of a space which is not compact.
- (4) Prove that, \mathbb{R} with standard topology is a T_2 -Space.
- (5) Prove that, if *Y* is an open subspace of a locally compact, Hausdorff space *X* then *Y* is locally compact.
- (6) Prove that, every compact Hausdorff space is regular.
- (7) Prove that, every subspace of a completely regular space is completely regular.
- (8) Define terms : Cover and Subcover.
- (9) Prove that, Every Cauchy sequence (x_n) in (\mathbb{R}, d) is a bounded sequence.
- (10) Define term : Completion in a metric space and give an example of it.

HP-003-1162003]

[Contd...

- 2 Attempt any two :
 - (1) If X is a T_2 -Space and (x_n) is a sequence in X and suppose $(x_n) \rightarrow x$ as well as $(x_n) \rightarrow y$ in X. Prove that, x = y.
 - (2) Prove that, a space X is a T₁-Space if and only if for every x ∈ X, {x} is a closed subspace of X.
 - (3) Prove that, a space X is a Hausdorff if and only if the set $\Delta = \{(x, x) \mid x \in X\}$ is a closed subset of $X \times X$.

3 Attempt followings :

- (1) Prove that, $X \times Y$ is compact if and only if both X and Y are compacts.
- (2) Prove that, if *X* is compact Hausdorff space without isolated points then *X* must be uncountable.

OR

- **3** Attempt followings :
 - (1) Prove that, a subspace Y of \mathbb{R} is compact if and only if Y is closed and bounded subset of \mathbb{R} .
 - (2) State and prove, Lebesgue Covering Lemma.

4 Attempt any two :

- (1) Let $f: X \to Y$ is onto, open and continuous and X is locally compact. Prove that, Y is also locally compact.
- (2) Prove that, $X \times Y$ is locally compact if and only if X and Y are locally compact spaces.
- (3) If *X* and *Y* are homeomorphic and *X* is regular then prove that *Y* is also regular.
- 5 Attempt any two :
 - (1) Prove that, $X \times Y$ is completely regular if and only if X and Y are completely regular.
 - (2) Prove that, a T_1 -Space X is normal iff whenever $A \subset X$ is closed, $U \subset X$ is open and $A \subset U$, there is an open set V such that $A \subset V \subset \overline{V} \subset U$.
 - (3) Prove that, a compact, Hausdorff space is normal.
 - (4) Let (X, d) be a metric space and (x_n) be a sequence in X. Prove that (x_n) is Cauchy in (X, d) if and only if (x_n) is Cauchy in (X, \overline{d}) .

2

HP-003-1162003]

[190 / 5-4]

 $2 \times 7 = 14$

2×7=14

 $7 \times 2 = 14$

 $2 \times 7 = 14$